

OUR PURPOSE

Improving life

for all by integrating

The integration illustrated by five years of Automatic Identification System (AIS) transponder data from A.P. Moller - Maersk vessels registered in the company's scheduling system GSIS

Gateway and hub terminals

A.P. Moller - Maersk is an integrated logistics company working to connect and simplify its customers' supply chains. As a global leader in logistics services, the company has 100,000+ customers, operates in more than 130 countries and employs around 100,000 people. AP. Moller - Maersk is aiming to reach net zero emissions by 2040 across the entire supply chain with new technologies, new vessels and green energy solutions.

Ocean

Green methanol-enabled vessels on order

Containers per annum (m FFE), serving over 475 ports worldwide

11.9

Container vessels operated

670+

Logistics & Services

7,800k+ sqm warehousing capacity worldwide across 460+ Sites

Electric vehicles in operation; 200+ more on order

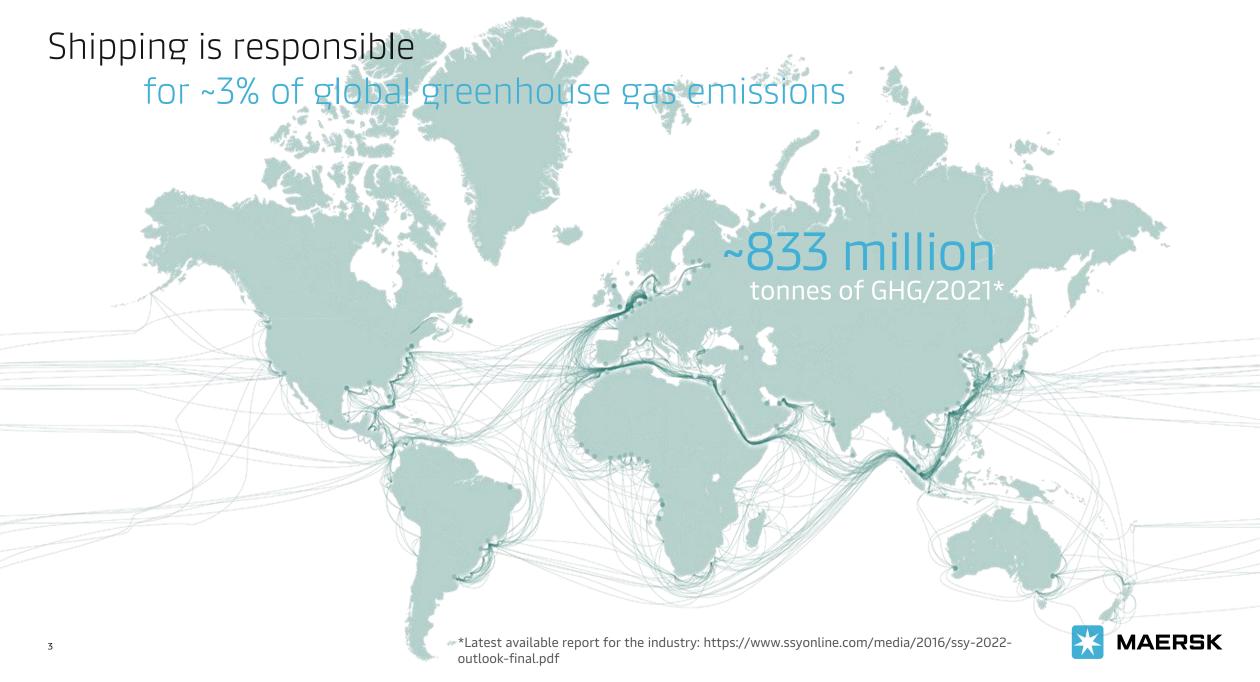
100+

Intermodal volumes managed (m FFE)

4.0

Terminals*

Moves in 2023


21.7m

Vessel calls

27,000+

Operating facilities across 33 countries; 3 new port projects

60

Maersk's climate commitments

validated by the Science Based Targets initiative

2030

Aligned with 1.5 degree pathway by 2030

Net Zero by 2040

Main KPIs and targets: Baseline year 2022

Scope 1 Own operation	35% Absolute reduction in total scope 1 emissions	
Scope 2 Purchased electricity	100% Renewable electricity sourcing	
Scope 3 Value chain	22% Absolute reduction in total scope 3 emissions	

Absolute reduction in total scope 1 and 2 emissions*Absolute reduction in total scope 3 emissions*

^{*} Residual emissions will be neutralised in accordance with the Net Zero criteria of the Science Based Targets initiative.

Decarbonising Ocean

2030 Targets

- **35**% Absolute reduction in **scope 1** and scope 3 well-to-wake emissions from own container shipping operations
- 17% Absolute reduction in scope 3 well-to-wake emissions from subcontracted container shipping operations

Key Levers

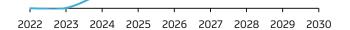
- Network optimisation
- Network execution
- Technical management

Transitioning to green fuels

- Investment in green vessels via existing fleet renewal plan
- Retrofit select existing vessels
- Securing the green methanol needed today and continuing to explore green fuel options
- Introduce chartered green vessels
- Use of bio-diesel as a gap closer

Continued growth in Maersk ECO Delivery

- Commitment from key customers for ECO Delivery shipping
- Improved methodology to support accurate emissions reporting


Actions

25 green methanol-enabled vessels on order through 2027

Green fuel enabled TEU capacity (% of total fleet by year end)

All the way to zero

Maersk green investment in dual-fuel vessels

 25 owned vessels with dual-fuel engines, able to operate on green methanol. Five of them are already in operation

Laura Mærsk

with a capacity of **2,100 TEU**, in operation since September 2023

18 vessels

with a capacity of **16,000/17,000 TEU**, powered by MAN G95 dual-fuel engines (main engine), to be delivered 2024-2025

6 vessels

with a capacity of **9,000 TEU**, scheduled for delivery in 2026 and 2027

 New orders placed in 2024 for 50-60 dual-fuel vessels, owned and chartered

These vessels will be a mix of methanol and liquified gas propulsion system that can sail on conventional and low GHG emission fuels, like bioand e-methanol and bio-methane

The vessels come different sizes offering great flexibility to meet customer needs

They will enter the fleet from 2026 to 2030 and replace aging vessels.

Sourcing green fuels at scale through strategic partnerships

Green methanol is a key fuel in our decarbonisation journey, while we continue to explore green fuel options and build a supply portfolio of different green fuels.

What is a green fuel?

In Maersk, 'green fuels' refers to **fuels with low to very-low GHG emissions over their life cycle**, compared to fossil fuels. 'Low' means a reduction of 65-80% in GHG emissions, and 'very low' means a reduction of 80-95% in GHG emissions, compared to fossil fuels.

- We are developing a diverse portfolio of partnerships for securing the green fuel needed to sail our new vessels
- For the Laura Mæersk, the first methanol vessel sailing in 2023 and Ane Mærsk, the first large ocean-going dual fuel engine vessel. we have secured the needed volumes of bio-methanol from our partners OCI Global and Equinor.
- The **green fuel facility in Kassø, Denmark**, established by our partner European Energy, is expected to produce 16.000 tons of emethanol a year, starting in 2024
- We have signed a long term offtake agreement with green methanol producer Goldwind for 500KT fuel, first volumes expected in 2026
- We expect a diverse green fuel mix for our methanol-enabled vessels in the transition years towards sufficiently scaled green methanol production

Exploring fuel pathways for

decarbonising shipping

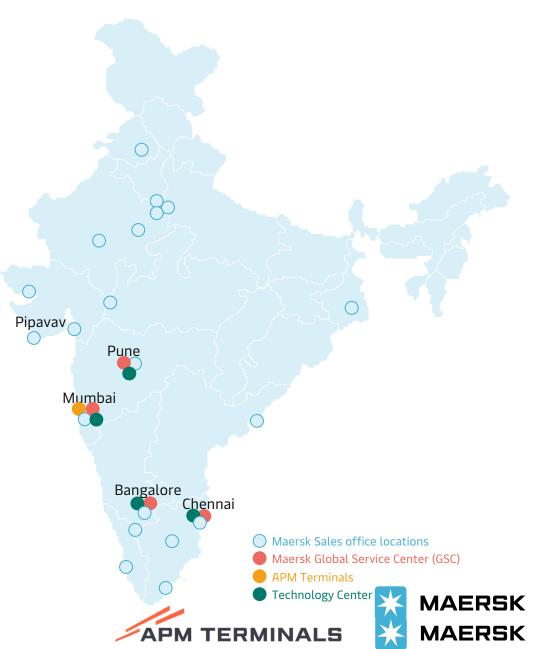
	Fuel	Key advantages	Key limitations/risks
0	Biodiesel (from waste feedstocks)	 Biodiesel market already exists Can be used as drop-in fuel in existing vessels and engines 	 Limited availability of suitable biomass feedstock Price pressure due to competing demand from road transport and aviation
	Bio- and e-methanol (from waste feedstocks)	 Can be produced from a wide range of waste biomass and renewable electricity Vessels running on methanol are already in operation today Well-known handling 	 Bio-methanol: availability of suitable biomass feedstock (mostly dry biomass like agricultural and forestry waste) E-methanol: availability of biogenic CO₂ source and renewable electricity
() CH4	Bio-methane ('bio-LNG') (from waste feedstocks)	Can offer significant GHG emission reduction savings, depending on the production pathway	 Availability of suitable biomass feedstock (mostly wet biomass like manure, dairy waste and wastewater) Controlling the methane slip into the atmosphere during the fuel life cycle
H) H	Green ammonia (e-ammonia)	 Can be produced at scale from renewable electricity Contains no carbon and does not emit CO2 in combustion 	 Safety and toxicity challenges as well as lifecycle climate and environmental impacts Infrastructure challenges at ports Future costs depend on cost of renewable electricity and availability of engine (evaluation is still ongoing)

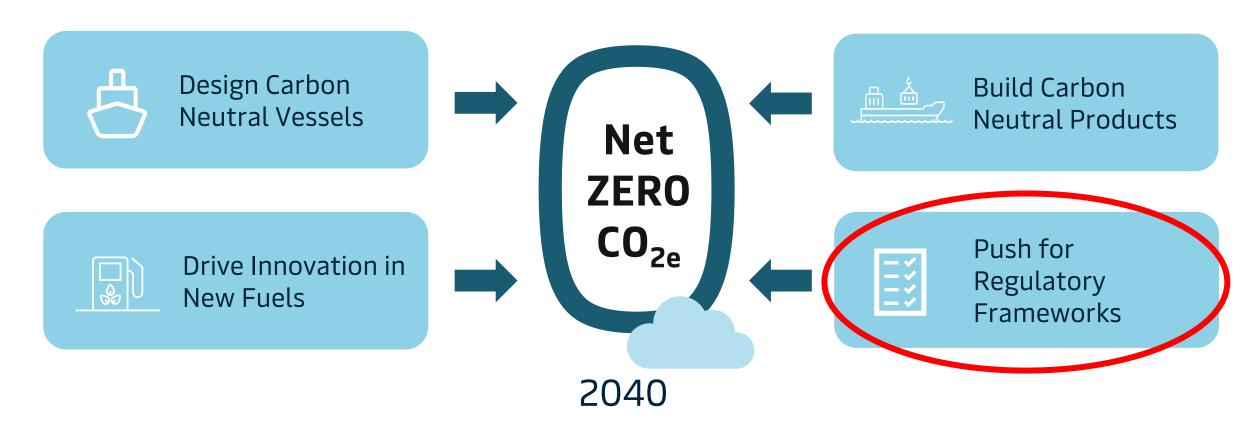
India's role in Energy Transition for shipping

Energy Transition in India

Supply: potential for conducive markets for producing green hydrogen (H2) and its derivates.

Drivers: unique blend of natural advantages, supportive policies, and strong government backing.


Differentiators: one of the lowest renewable energy costs worldwide, underpinned by India's natural resources, including solar and wind energy, and a surplus of biomass


Government policies

Government initiatives further strengthen India's position in the green H2 market

To fully unlock the potential strong regulation is needed globally

Regulation as Enabler For Energy Transition

A Level Regulatory Playing Field is key to achieving full decarbonisation

Five critical policy levers

Strong pricing
Mechanism to
bridge the price
gap between fossil
& green fuels.

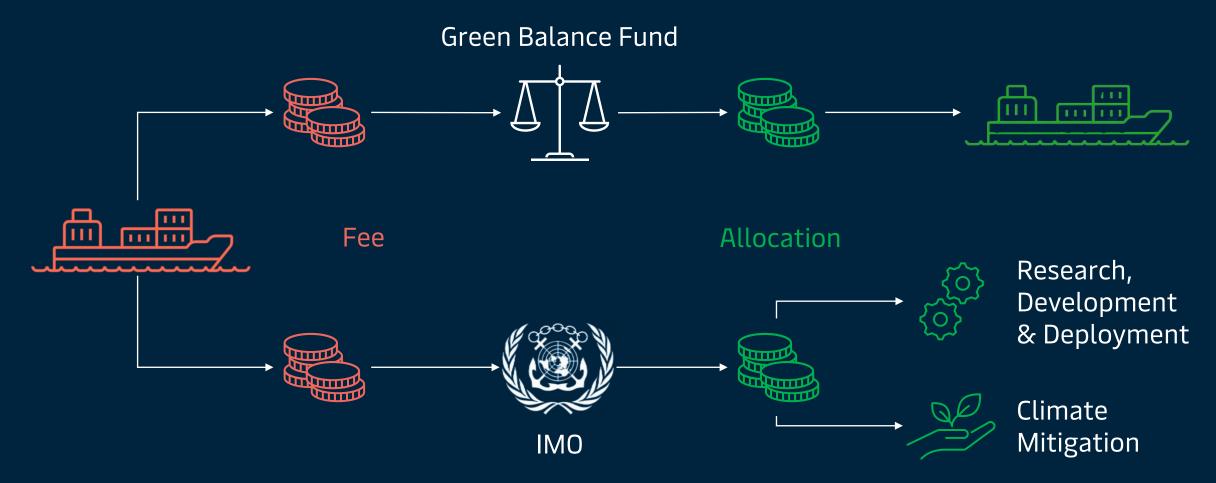
A well-to-wake approach is required (lifecycle perspective to decarbonisation).

Must look beyond CO₂ & include all GHG, notably methane & nitrous oxide.

Good carbon needs to be captured & used.

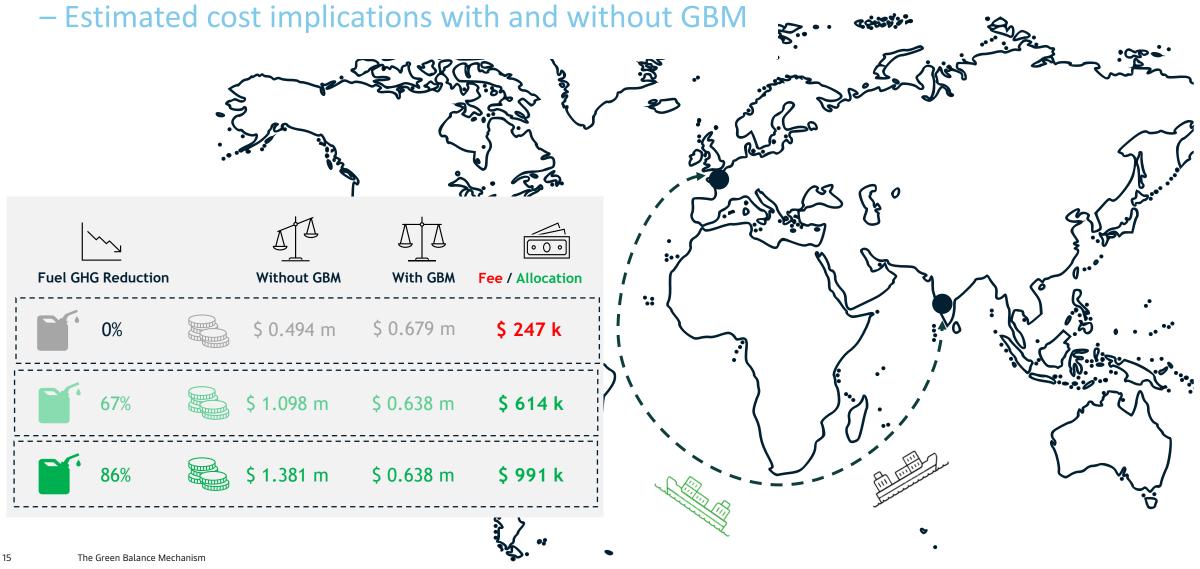
Need for global regulation to address all emissions and secure just transition

IMO GHG 2023 Strategy


Targets

Net zero emissions by or around 2050 **Fuel mix target**: **5**% striving towards **10**% zero technologies, fuels & energy sources in 2030 Check points for total emission reductions (compared to 2008): 2030: 20-30%, 2040: 70-80% Ambitious time plan for adoption of regulation including **GHG pricing mechanism by 2025** LCA Guidelines and Interim guidelines for biofuels approved

Enhanced regulatory clarity & demand signal



World Shipping Council proposal for a Green Balance Mechanism

Example: sailing the From India to Europe

