Carbon Accounting Renewable Fuels: a tool for decarbonising civil aviation

M. Prussi

Carbon accounting

Why is it needed

Carbon accounting to measure progresses

- At international and regional levels there are targets on the GHG reduction.
- Various incentives/mandates exist.
- Emission Trading Schemes associates economic value to the unit of CO2 saved.
- Voluntary markets allow for valorising CO2 reductions.

Carbon accounting to measure progresses

- At international and regional levels there are **targets** on the **GHG reduction**.
- Various incentives/mandates exist.
- Emission Trading Schemes associates
 economic value to the unit of CO2 saved.
- Voluntary markets allow for valorising CO2 reductions.

In this context, being able to **properly quantify** the **CO2 reduction is key.**

Civil Aviation sector

We we stand about carbon accounting

Why we need renewable SAF liquid fuels?

- Due to some peculiar characteristics of the aviation sector, the penetration of disruptive technologies (e.g. electrification) is expected to occur at a different pace than in other sectors (e.g. road).
- Alternative to fossil kerosene should ideally be able to supply exisiting infrastructures and engines (drop-in fuels).
- This is the reason why **liquid alternative fuels could be an effective short-medium term mean** for deacarbonising international aviation.

The ICAO LTAG feasibility study: the expected role of SAF The 41st ICAO

Figure 1. CO₂ emissions from international aviation associated with LTAG International aviation

https://www.icao.int/environmental-protection/Pages/LTAG.aspx

From LTAG it is clear the crucial role of SAF

attainability

Assembly adopted a

international aviation

of net-zero carbon

long-term global

aspirational goal

(LTAG) for

IEA G20 - 2024

Carbon Accounting for Sustainable Biofuels:

- IEA, supporting Brazil's G20 presidency, explores regulatory approaches on biofuels carbon accounting.
- Sustainable biofuels are crucial for decarbonizing the transport sector, especially in aviation, shipping, and complementing EVs in road transport.
- Transparent, science-based carbon intensity calculations are essential for creating regulatory frameworks that attract investments for biofuel scaling.
- IEA recommends adopting **pragmatic**, **verifiable**, and **performance-based policies** to ensure continuous improvement in sustainable biofuels.

Carbon Accounting for Sustainable Biofuels

Claiming Emission Reductions from CORSIA ELIGIBLE FUELS

Emission reductions are related to the life cycle emissions value of the CEF

UPDATE: Second edition of Annex 16 Vol IV now uses the acronym "L_{CEF}" to represent the life cycle emissions of the CEF.

Example: If, in 2021, an operator uses 10,000 tonnes of Jet-A fuel produced from Used Cooking Oil (default LSf=13.9 gCO2e/MJ*), the amount of emissions reductions will be: L_{CEF} $ER_{2021} = 3.16 * \left[10,000 * \left(1 - \frac{13.9}{89} \right) \right] = 26,665$ tonnes of CO₂

CORSIA - Life Cycle Assessment of SAF

CORSIA Sustainability Theme 1 requires lower carbon emissions on a <u>life cycle basis.</u> CORSIA Sustainability Criterion 1.1 requires net greenhouse gas emissions <u>reductions of at least 10%</u> compared to a baseline.

These requirements are met based on a Life cycle assessment of the SAF:

CORSIA – Life Cycle Assessment of SAF There are two options to obtain the life cycle emissions of SAF and LCAF

DEFAULT Life Cycle Emissions ICAO document "CORSIA Default Life Cycle Emissions Values for CORSIA Eligible Fuels" Default emission values, as a function of the feedstocks and conversion processes.

ACTUAL Life Cycle Emissions ICAO document "CORSIA Methodology for Calculating Actual Life Cycle Emissions Values" Allows calculation of specific emissions values to a given SAF or LCAF

CLCA CORSIA methodology

Core LCA $[gCO_2e/MJ] = e_{fe_c} + e_{fe_hc} + e_{fe_p} + e_{fe_t} + e_{fefu_p} + e_{fu_t} + e_{fu_c}$

= 150 (2021): 111398. approach to calculate life-cycle GHG emissions for aviation fuels. "CORSIA: The first internationally adopted and Sustainable Energy Reviews Prussi, Matteo, et al. Renewable

Default life cycle emissions values

Core Default LCA values depend on: - conversion process - feedstock - pathway

specification

Region is only relevant to ILUC values

 Table 1. CORSIA Default Life Cycle Emissions Values for CORSIA Eligible Fuels produced with the Fischer-Tropsch Fuel Conversion Process

Region	Fuel Feedstock	Pathway Specifications	Core LCA Value	ILUC LCA Value	LS _f (gCO ₂ e/MJ)
Global	Agricultural residues	Residue removal does not necessitate additional nutrient replacement on the primary crop	7.7		7.7
Global	Forestry residues		8.3]	8.3
Global	Municipal solid waste (MSW), 0% non-biogenic carbon (NBC)		5.2	0.0	5.2
Global	Municipal solid waste (MSW) (NBC given as a percentage of the non- biogenic carbon content)		NBC*170.5 + 5.2		NBC*170.5 + 5.2
USA	Poplar (short-rotation woody crops)		12.2	-5.2	7.0
Global	Poplar (short-rotation woody crops)		12.2	8.6	20.8
USA	Miscanthus (herbaceous energy crops)		10.4	-32.9	-22.5
EU	Miscanthus (herbaceous energy crops)		10.4	-22.0	-11.6
Global	Miscanthus (herbaceous energy crops)		10.4	-12.6	-2.2

For more details, please refer to <u>ICAO</u> document 06 - Default Life Cycle Emissions -June 2022.pdf

The regional dimension

The need for alignment

INTERNATIONAL

EUROPEAN

and revision EnC Renewable Energy Coordination Group, 1 June 2021

Matthieu Ballu, European Commission DG ENER

Emission Trading System (EU ETS)

REDII(I) methdology for calculating CI of alternetive fuels

L 328/1	50 EN C	fficial Journal of the European Union	21.12.2018		
C	. METHODOLOGY				
1.	Greenhouse gas emissions from the pras follows:	oduction and use of transport fuels, biofuels and biol		For use in ReFuel	
	(a) greenhouse gas emissions from th	e production and use of biofuels shall be calculated as			
	$E = e_{ec} + e_1 + e_p + e_{td} + e_u - e_{sca} - \epsilon$		EU aviation and		
	where	An	nex V REDII		
					Fueleo maritime
E =	total emissions from the use of the fuel;				
e _{ec} =	emissions from the extraction or cultivation of raw materials				
e ₁ =	annualised emissions from carbon stock changes caused by la	nd-use change;			
e _p =	emissions from processing;			▼	
e _{td} =	emissions from transport and distribution;		e no tal hatenal		
e _u =	emissions from the fuel in use;		regated Act of a		
e _{sca} =	emission savings from soil carbon accumulation via improve	l agricultural management;	nethodology for re	newable	
e _{ccs} =	emission savings from CO ₂ capture and geological storage; an	d f	uels on non-biolog	jical	
e _{ccr} =	emission savings from CO ₂ capture and replacement.		origin (RFNBO)		
Emissio	ns from the manufacture of machinerv and equipment shall no	ot be taken into account.			
					-

Example of aspects where alignment may be challenging

- Indirect effects (i.e. iLUC)
- Conterfactual scenarions
 - important for CCU
- PtL (RFNBO or eFuels)
 - quality of the feedstock:
 - electricty requirement, CO2 streams allowed
 - approach for combustion

(CO2 atmospheric balance vs caounterfactual)

• Etc.

Examples of aspects where alignment may be challenging

- Indirect effects (i.e. iLUC)
- Conterfactual scenarions
 - important for CCU
- PtL (RFNBO or eFuels)
 - quality of the feedstock:
 - electricty requirement, CO2 streams allowed
 - approach for combustion
 (CO2 atmospheric balance vs caounterfactual)
- Etc.

	ICAO CORSIA	EU RED meth.
ILUC	Calculated	Risk-based approach
Counter factual	Partially considered	Partially considered
PtL	Under development	Secific meth. For calc and feedstock requirements
•••	••	•

Conclusions

- Alternative fuels are considered an effective tool for the decarbonisation transport, especially for "hard-to-abate" sectors.
- Aviation has been growing, with a significant associated environmental impact.
- Civil aviation is expected to rely on Sustainable aviation liquid fuels (SAF) in the shortmedium term, especially for the long-haul flights.
- SAFs as defined in CORSIA can reduce life-cycle GHG emissions by over 90%.
- Carbon accounting for policy is complicated by inconsistent GHG emission reports and lack of consensus on methodologies.
- However, accounting is crucial to foster the alternative fuels uptake at international level.
- Impact of such risk may be mitigated by strong presence of regional actors in the international inititives.

